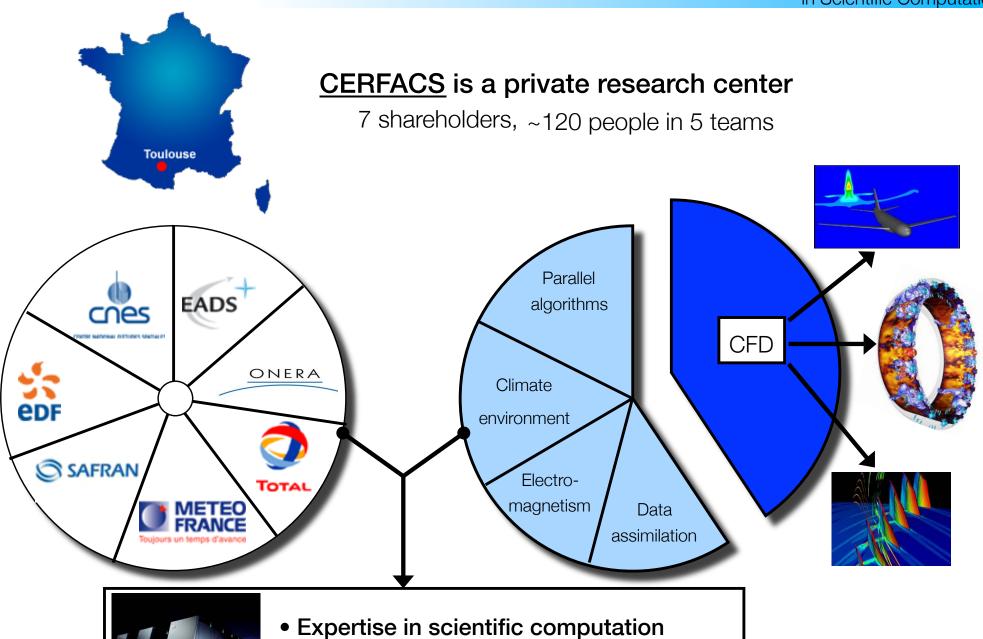


Simulation en combustion diphasique turbulente:


codes, formation, diffusion chez les industriels, calculs HPC (GENCI, PRACE, INCITE)

L. Gicquel¹

B. Cuenot¹, G. Staffelbach¹, O. Vermorel¹, E. Riber¹, A. Dauptain¹ T. Poinsot²

• Access to large computational resources

http://www.cerfacs.fr

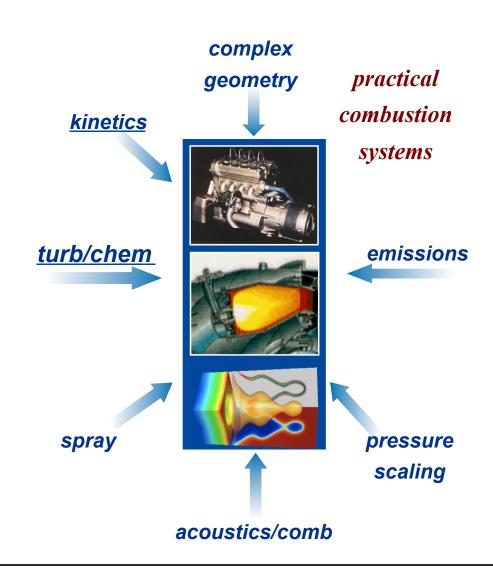
INTRODUCTION: The overall context

- CO₂ emissions from 1990 to 2025^a: +100-600% (2008: 2.2% of the total).
- European objectives for 2020^b:
 - > reduce pollutant emissions

 $(NO_x: -80\%, CO_2: -50\%),$

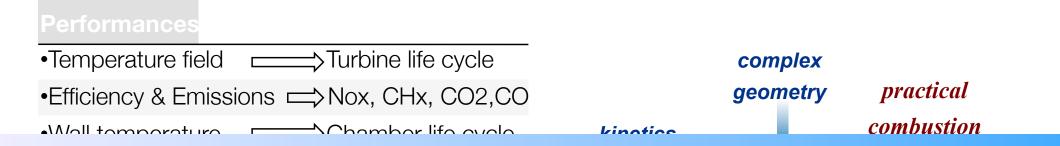
- reduce the noise emissions (-10dB).
- Economical constraints:
 - > cut the engine costs (today it represents 30% of the aircraft cost).

Economical and environmental constraints impose technical and technological changes!


TECHNICAL CHALLENGES IN AERONAUTICAL BURNERS

Performances

- •Temperature field _____>Turbine life cycle
- •Efficiency & Emissions ⇒ Nox, CHx, CO2,CO
- Stability & ignition


Technical challenges

- Aerodynamics & mixing
- swirl, jets in cross-flow, multiperf.
- Turbulent combustion
- kerosene kinetics, pollutants
- •Two-phase flow
- fuel flow physics & dynamics
- Heat transfer
- cooling, thermal radiation

Advanced CFD and Massively parallel computer architectures offer a clear potential for time and cost reductions of the design chain while providing more accurate predictions

TECHNICAL CHALLENGES IN AERONAUTICAL BURNERS

Orientations and actions that are now well accepted by the turbulent combustion research community...

QUESTION: How to transform such findings into a differentiating research and development tool?

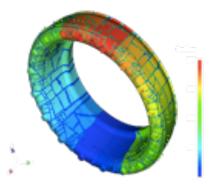
Advanced CFD and Massively parallel computer architectures offer a clear potential for time and cost reductions of the design chain while providing more accurate predictions

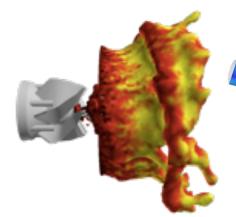
1/ The AVBP Code

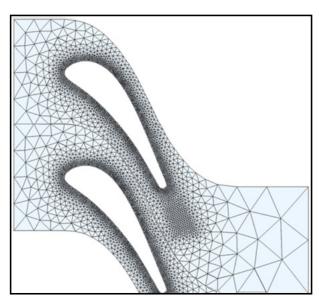
- => Code characteristics and models
- => HPC capabilities

2/ The Community and Development model

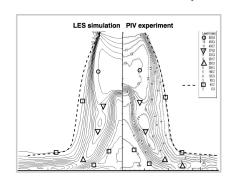
- => French combustion community and CERFACS / AVBP
- => CERFACS team
 - Team actions and orientations: Formation, GUI, code maintenance (relation with HPC centers)
 - Transfer towards the industrial partners
- => Outcome of this organization

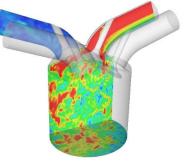

3/ Conclusions and perspectives

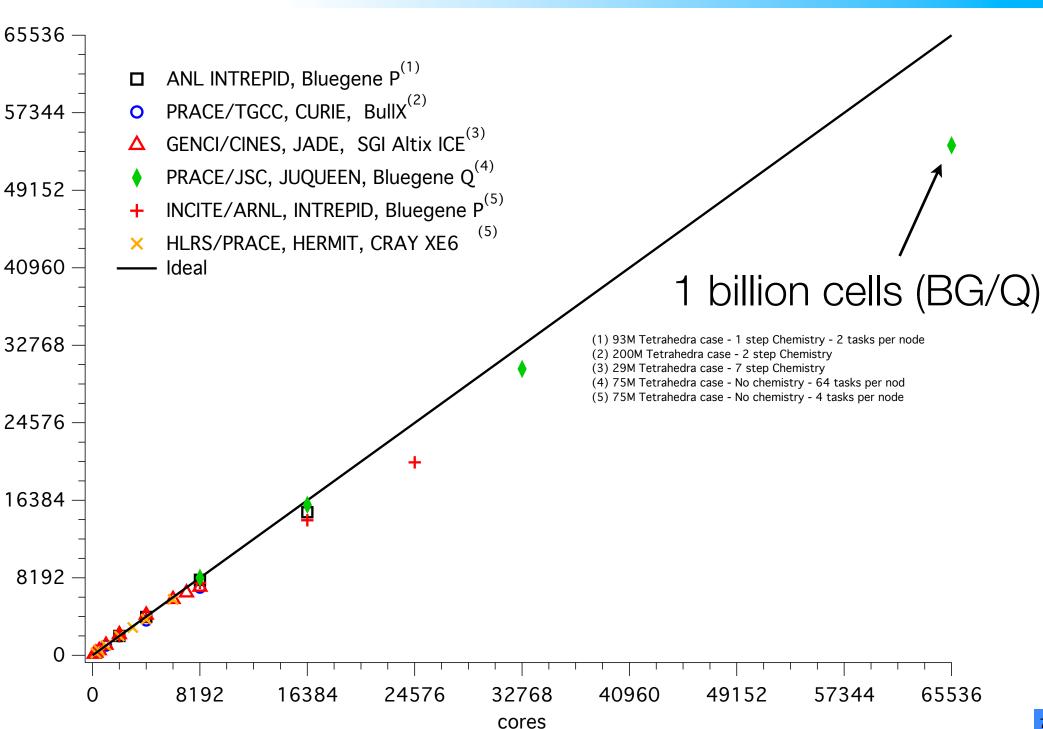

The code AVBP


AVBP - An unstructured LES flow solver:

- Developed by CERFACS and IFP-EN,
- External/internal flows,
- Fully compressible turbulent reacting flows (ideal & real gases),
- DNS/LES approaches,
- Unstructured hexaedral, tetraedral, prisms & hybrid meshes,
- Massively parallel,
- C/Fortran languages,
- SPMD approach.
- Multi-phase solvers (Lagrangian & Eulerian)







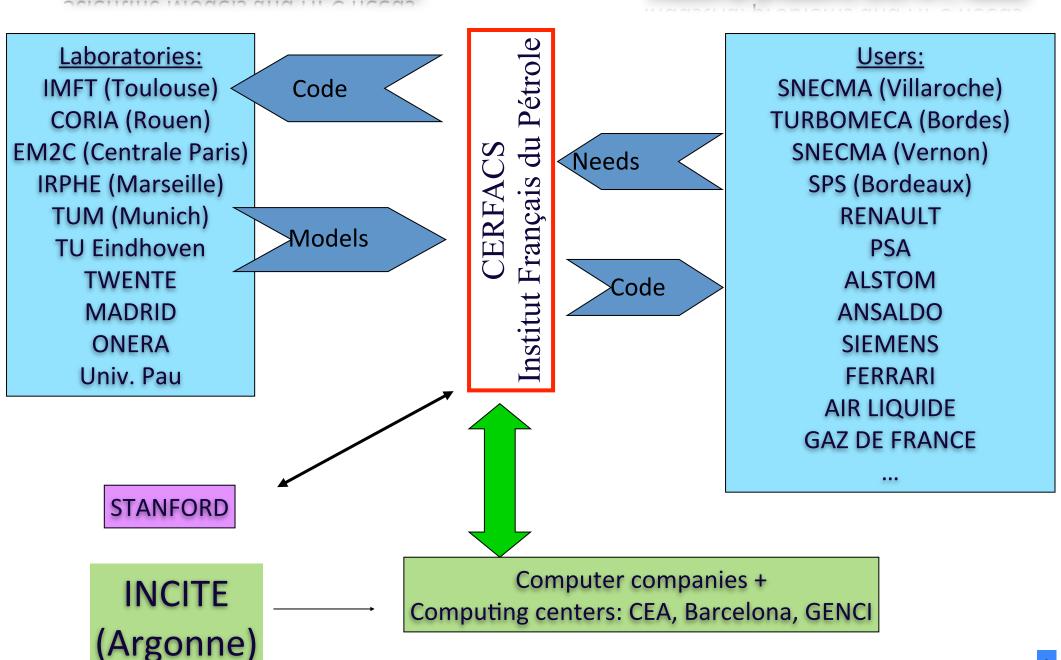
Unstructured grid (Coincident interfaces)

The code AVBP

1/ The AVBP Code

- => Code characteristics and models
- => HPC capabilities

2/ The Community and Development model


- => French combustion community and CERFACS / AVBP
- => CERFACS team
 - Team actions and orientations: Formation, GUI, code maintenance (relation with HPC centers)
 - Transfer towards the industrial partners- Transfer towards the industrial partners
- => Outcome of this organization

3/ Conclusions and perspectives

AVBP Working Model

Scientific Models and HPC needs

Industrial problems and HPC needs

CERFACS Combustion team experience

The last ten years AVBP has been essentially used at CERFACS and research labs. With the explosive development of AVBP and YALES at *SAFRAN*, the last two years have shown that building an efficient HPC CFD team in combustion requires multiple experts:

CERFACS

Combustion experts

- know the physics
- write the models
- use the code but do not address HPC

HPC experts

- develop the code
- port it on new machines
- do the first demos

CERFACS

Combustion experts

- know the physics
- write the models
- use the code but do not address HPC

HPC experts

- develop the code
- port it on PRACE/INCITE machines
- do the first demos

CERFACS

Combustion experts

- know the physics
- write the models
- use the code but do not address HPC

HPC experts

- develop the code
- port it on PRACE/INCITE machines
- do the first demos

Combustion labs:

- know theory and experiments
- don't know the code details or HPC

CERFACS

Combustion experts

- know the physics
- write the models
- use the code but do not address HPC

HPC experts

- develop the code
- port it on PRACE/INCITE machines
- do the first demos

Combustion labs:

- know theory and experiments
- don't know the code details or HPC

Industry experts:

- know combustors
- know 'old style' CFD and learn HPC

CERFACS

Combustion experts

- know the physics
- write the models
- use the code but do not address HPC

HPC experts

- develop the code
- port it on PRACE/ INCITE machines
- do the first demos

Combustion labs:

- know theory and experiments
- don't know the code details or HPC

Industry experts:

- know combustors
- know 'old style' CFD and learn HPC

Sous traitants:

- know a little bit on CFD and the combustors

CERFACS

Combustion experts

- know the physics
- write the models
- use the code but do not address HPC

HPC experts

- develop the code
- port it on PRACE/ INCITE machines
- do the first demos

Combustion labs:

- know theory and experiments
- don't know the code details or HPC

Students:

- know nothing

Industry experts:

- know combustors
- know 'old style' CFD and learn HPC

Sous traitants:

- know a little bit on CFD and the combustors

CERFACS

Combustion experts

- know the physics
- write the models
- use the code but do not address HPC

HPC experts

- develop the code
- port it on PRACE/ INCITE machines
- do the first demos

Increasing demands on both sides

!! Everybody wants its share of the cake !!

Combustion labs:

- know theory and experiments
- don't know the code details or HPC

Students:

- know nothing

Industry experts:

- know combustors
- know 'old style' CFD and learn HPC

Sous traitants:

know a little bit on CFD and the combustors

CERFACS today

Combustion experts

- know the physics
- write the models
- use the code but do not address HPC

HPC experts

- develop the code
- port it on PRACE/ INCITE machines
- do the first demos

Interface / formation

- interfaces to access the code
- formation to learn the basics

Combustion labs:

- know theory and experiments
- don't know the code details or HPC

Students:

- know nothing

- know 'old style' CFD and learn HPC

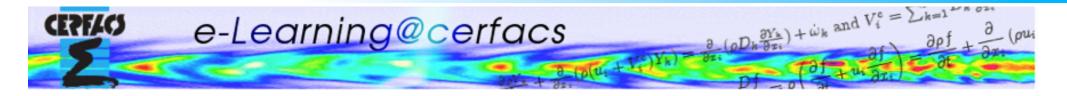
Sous traitants:

- know a little bit on CFD and the combustors

Formations @ CERFACS

TRAINING SESSIONS AT CERFACS

http://www.cerfacs.fr/training


In 2011, CERFACS initiates a training program for computer science targeting students, PhDs, engineers and researchers, in academic and applied research.

The training sessions are taught by CERFACS researchers and engineers.

Practical training sessions dedicated to the codes developed or co-developed by CERFACS are part of the program. CERFACS is authorized to give training sessions within the Individual right to training (DIF).

PROGRAMME 2011/2012

Numerical methods for Large Eddy Simulation using AVBP	10-14 october 2011 2-6 april 2012
Code coupling using OpenPALM	17-19 october 2011 18-20 january 2012 13-15 june 2012
Advanced mesh generation using CENTAUR	26-27 january 2012
Data assimilation using OpenPALM	30 january-1 st february 2012
Programming in Fortran 90	13-14 march 2012
Computer architectures and optimisation	22 march 2012
Parallel programming tools	23- 24 april 2012
Downscaling climate scenarios with the weather-typing based methodology DSCLIM	25-26 april 2012
Solution methods for optimisation problems	9-11 may 2012
Fundamentals to understand and analyze high fidelity CFD simulations	21-25 may 2012
Code coupling using OASIS	30-31 may-1 st june 2012
Numerical methods for the electromagnetic problem using CESC	6-8 june 2012
Solution methods for linear systems	11-12 june 2012
Introduction to data assimilation	18-19 june 2012
Solutions of partial differential equations: applications to the wave propagation problem	25 - 26 june 2012
Advanced algorithms for data assimilation	27-29 june 2012

eLearning @ Cerfacs - Online Courses

Contents

CERFACS members collaborate to formation in multiple places (engineering schools and universities in Toulouse, Bordeaux and Paris, and specialized schools for PhDs and engineers such as Von Karmann Institut, College de Polytechnique, etc) and on many topics (numerical methods, high-performance computing, fortran, optimization, tutorial for Large Eddy Simulation of reacting flows, theoretical and numerical combustion, Computation Fluid Dynamics on massively parallel architectures, etc).

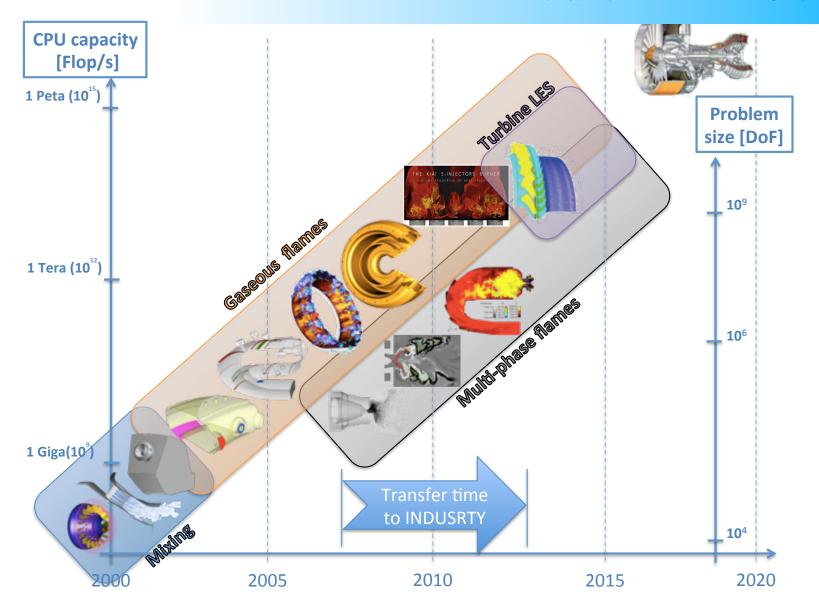
To ensure that students can have the best access to teaching materials (courses, hands-on exercices, links to various external sources, examples of exams), CERFACS has gathered data on this website where you can download all data related to the course they are following. You are welcome to use this site.

Topics

- Combustion
- Turbomachines

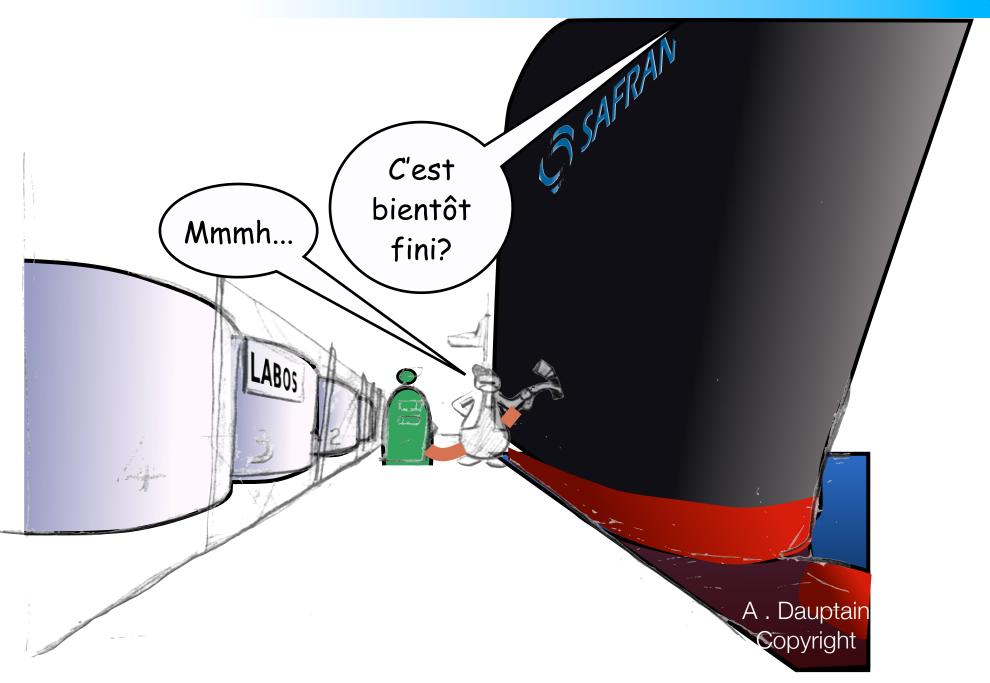
Home

Topics

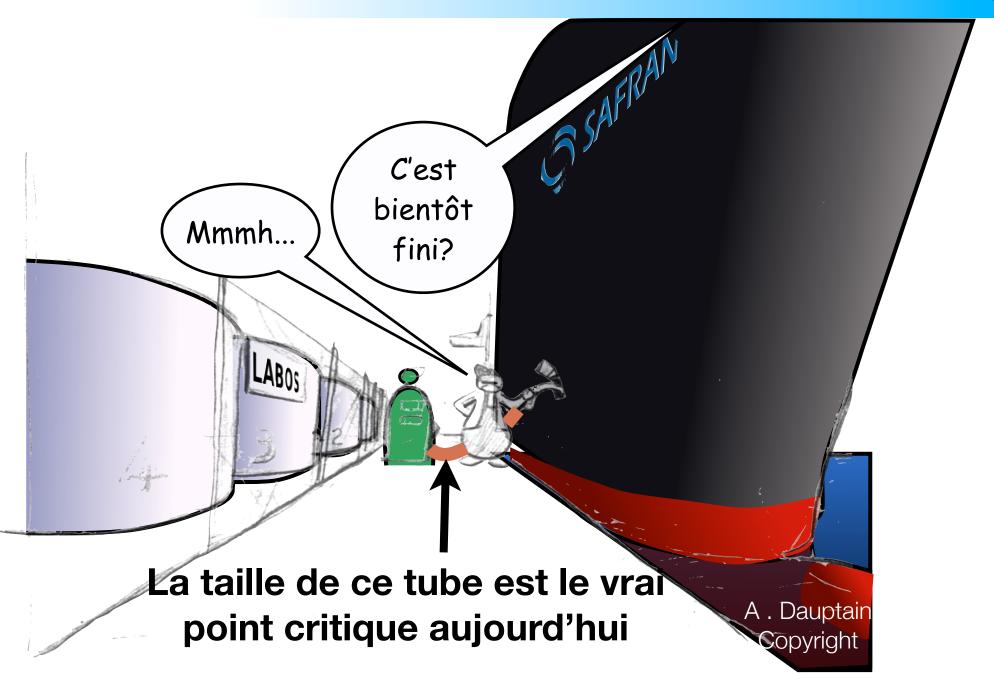

Combustion
Turbomachines
Environmental science
Numerical methods for CFD
Advices for phD students
Miscellaneous
Coupling

Multiple deported lectures from CERFACS' teams:

- Princeton Combustion Week: Turbulent Combustion Simulations, T. Poinsot June 2013
- Open Palm Formation @ CINES by F. Duchaine, May 2013
- VKI Lecture Series: LES for Aero Acoustic Flow Predictions by L. Gicquel March 2013


•

Relation with HPC centers



Sustained collaborations and exchanges with HPC computing centers throughout the world allowed the following progresses

Transfer to Industry

Transfer to Industry

Rather closed context and rigid framework....

Second generation GUI for AVBP

Mesh Physical models Numerical method Boundaries

Theromdynamics for the gas phase

Viscosity temperature dependence:

Sutherland Power law

Temperature K:

473.

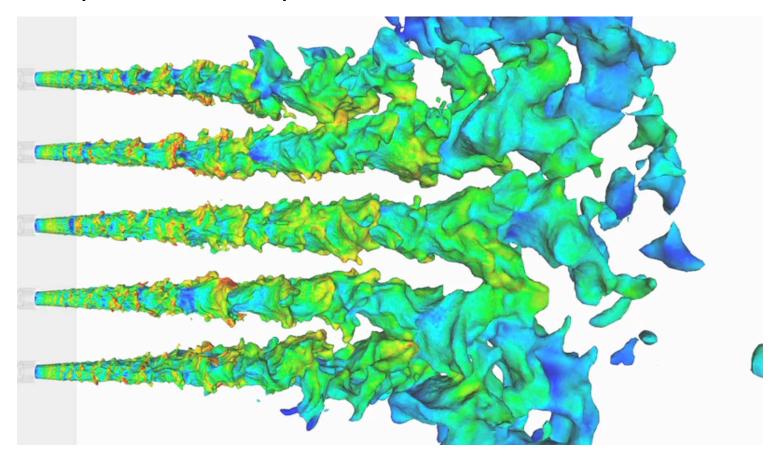
New protocol allows the generation of the GUI by the code developers and tool exportable to other codes

1/ The AVBP Code

- => Code characteristics and models
- => HPC capabilities

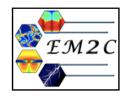
2/ The Community and Development model

- => French combustion community and CERFACS / AVBP
- => CERFACS team
 - Team actions and orientations: Formation, GUI, code maintenance (relation with HPC centers)
 - Transfer towards the industrial partners- Transfer towards the industrial partners
- => Outcome of this organization


3/ Conclusions and perspectives

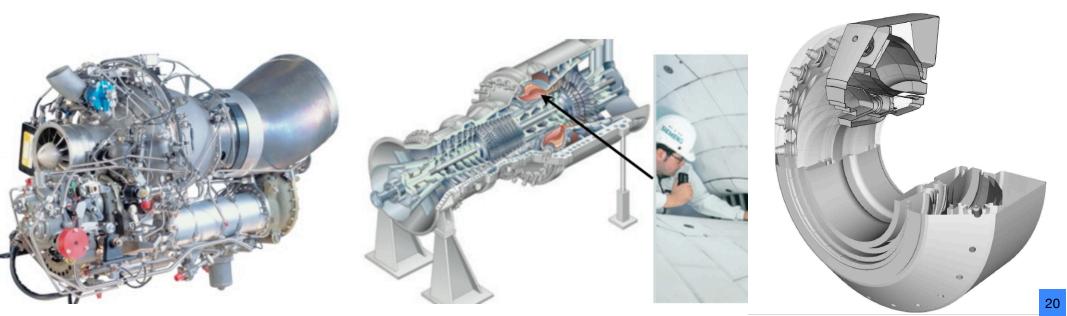
Large-Eddy Simulation of high-frequency instabilities under transcritical conditions

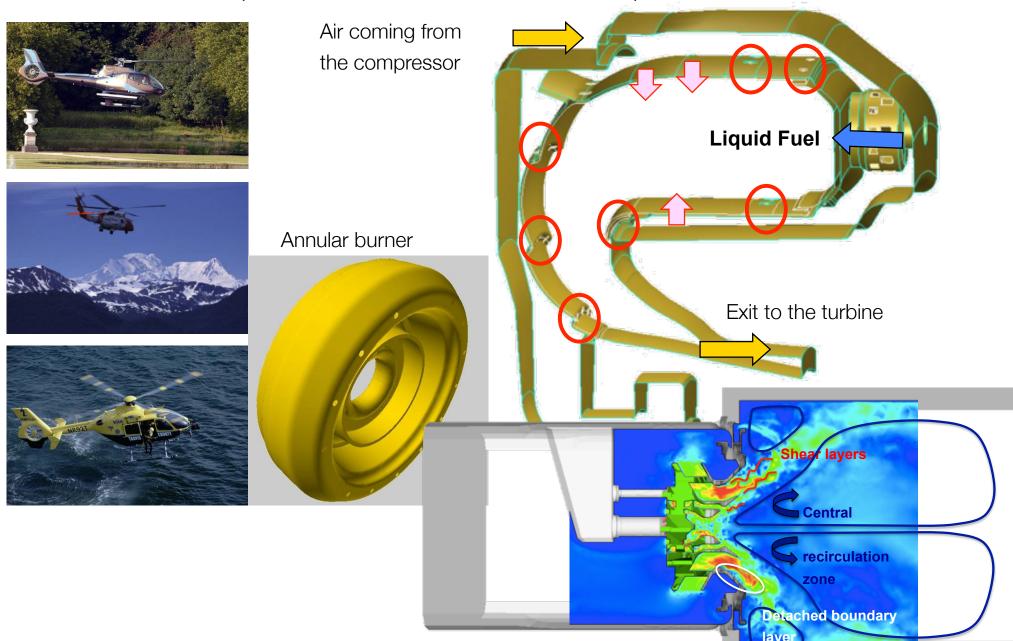
T. Schmitt, H. Layal, M. Boileau, S. Ducruix, S.Candel (EM2C),


A. Ruiz, G. Staffelbach, B. Cuenot and T. Poinsot (CERFACS)

Objective: Observe and understand the flame behavior in transcritical flows of an experimental setup submitted to artificial acoustic transverse perturbation.

8.5M hours at TGCC





Money: the ERC (European Research Council) INTECOCIS advanced grant at Institut de Mécanique des Fluides and CERFACS 2013-2018 (intecocis.inp-toulouse.fr)

- Five year, 2.5 Meuros project on HPC tools for combustion instabilities. Coordinator: IMFT
- Ten researchers on numerical combustion, 5 years
- Collaboration with GENCI, SAFRAN, ANSALDO, SIEMENS

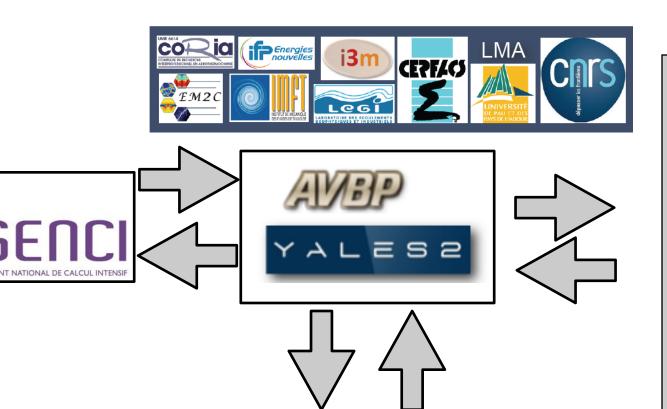
<u>Target configuration</u>: a helicopter combustion chamber – many things differentiate such a problem from the well controlled experimental context

1/ The AVBP Code

- => Code characteristics and models
- => HPC capabilities

2/ The Community and Development model

- => French combustion community and CERFACS / AVBP
- => CERFACS team
 - Team actions and orientations: Formation, GUI, code maintenance (relation with HPC centers)
 - Transfer towards the industrial partners- Transfer towards the industrial partners
- => Outcome of this organization


3/ Conclusions and perspectives

Conclusions

sic T. Poinsot at the CEA / GENCI Meeting

- DANS 10 ANS, LES GROUPES QUI AURONT CONTINUE A DEVELOPPER DES CODES DE PETITE TAILLE EN COMBUSTION, AURONT BEAUCOUP DE MAL A PUBLIER MAIS L'EFFORT POUR CONSTRUIRE DES GRANDS CODES EST ENORME
- SUCCESS: REPONSE 'LOGICIEL' DES COMBUSTIONNISTES FRANCAIS. COUVRE LES LABOS ET LES INDUSTRIELS
- L'ARRIVEE DE GENCI A PERMIS A LA COMMUNAUTE 'COMBUSTION NUMERIQUE' DE DISPOSER DES MOYENS NÉCESSAIRES POUR DEMONTRER SON SAVOIR FAIRE
- PRACE ET INCITE COMPLETENT CE DISPOSITIF
- LA COMBUSTION EST UN EXEMPLE OU CES OUTILS HPC SONT UTILISES AUJOURD'HUI PAR L'INDUSTRIE QUI SUPPORTE LEUR DEVELOPPEMENT DE FACON TRES FORTE

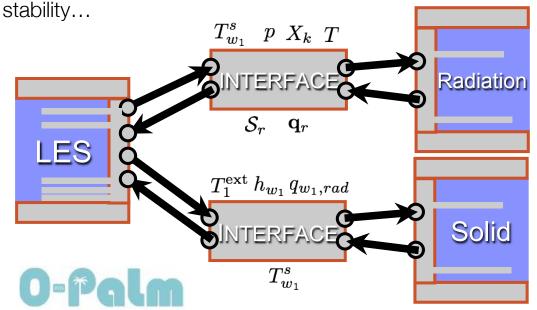
Perspectives

SNECMA DMS
SNECMA DMS
TURBOMECA
RHODIA
ALSTOM
AIR LIQUIDE
HERAKLES
AIRBUS
SIEMENS
ANSALDO

Perspectives

CFD can be coupled to heat transfer to study thermal problems

A 15 K increase at the turbine blade surface decreases the turbine lifetime by 2


Florent DUCHAINE - CERFACS AVBP & AVTP Coupling

Coupling introduces new issues:

- •Interfacing massively parallel codes while preserving their respective scalability
- •Preserve the overall CPU cost of the new massively parallel application

Co-lateral scientific issues:

•Non-coincident meshes, interpolations schemes, numerical

