
Context Numerical method HPC implementation Conclusion

Passage à l'échelle Tier1 -> Tier0
d'une application de CFD

par hybridation MPI / OpenMP

A. Cadiou, M. Bu�at, L. Le Penven, J. Montagnier

Laboratoire de Mécanique des Fluides et d'Acoustique
CNRS, Université Lyon I, École Centrale de Lyon, INSA de Lyon

Equip@Meso, Rouen 2013
Mécanique des �uides numérique intensive :

méthodes et nouvelles applications

Context Numerical method HPC implementation Conclusion

Computational challenge:
Numerical experiments of turbulent transition
of spatially evolving �ows

Context Numerical method HPC implementation Conclusion

O. Reynolds' pipe �ow experiment (1883)

Context Numerical method HPC implementation Conclusion

Transition in boundary layers

boundary layer

��

transitioninstabilitieslaminar turbulent

Rec = 520

Rexc = 91080

Re
′
c = 461

Re
′
xc = 71680 105 < Rext < 3.106 x

δ∗

Rex =
U∞x

ν

Re =
U∞δ∗

ν

H. Werlé

low level of perturbation (< 1%)

Tollmien-Schlichting waves (2D)

→ transition

M. Matsubara and P.H. Alfredsson

moderate level of perturbation

streaks (3D), Klebano� modes

→ by-pass transition (lower Rex)

Context Numerical method HPC implementation Conclusion

Stability of entrance and developing channel �ow

Transition at the entrance of the channel �ow at high Reynolds number

Development length and evolution towards a developed channel �ow

Stability of the developing entry �ow

Boundary layer interaction

Evolution of turbulence properties in the developing �ow

Very elongated geometry

Transition and Turbulence numerical experiments
require spectral accuracy

Geometry size implies large - and aniosotropic - number of modes

Context Numerical method HPC implementation Conclusion

Spectral approximation

Numerical experiment: need to resolve the �ow at all scales .

As
(
L
η

)3
∼ Re9/4 ↗, increasingly stringent condition for turbulence.

Spectral methods are attractive, due to their high spatial accuracy.

Spatial derivatives are calculated
exactly.

Exponential convergence for
smooth solutions (faster than FE,
FD ...).

0 1 2 3
kh

1

0

(d
u
d
x
)h
−
d
u
d
x

spectral

DF order 2

DF order 4

Since the 70's, extensively applied to simulation of turbulent �ows
but, their implementation on new HPC must be carefully considered.

Context Numerical method HPC implementation Conclusion

Incompressible Navier-Stokes equations

Governing equations

∂U

∂t
+ U.∇U = −∇p +

1

Re
∆U

∇.U = 0

U(t = 0) = U0

U|∂Ω

Galerkin formulation using an orthogonal decomposition of the velocity

U = UOS(U.ey) + USQ((∇× U).ey)

spectral approximation

U(t, x , y , z) =
∑
i

Ûi (t)αi (x , y , z)

Context Numerical method HPC implementation Conclusion

Numerical method

Spectral coe�cients with Nx × Ny × Nz modes

U(x , y , z , t) =

Nx/2∑
m=−Nx/2

Nz/2∑
p=−Nz/2

Ny−1∑
n=0

αmpOS,nÛ
mp
OS,n +

Ny−1∑
n=0

αmpSQ,nÛ
mp
SQ,n


Optimal representation of a solenoidal velocity �eld

Elimination of the pressure

Spectral approximation

Fourier-Chebyshev approximation with a Galerkin formulation

Time integration with Crank Nicolson / Adams Bashforth scheme

Context Numerical method HPC implementation Conclusion

Resolution of coupled systems for non-linear advective terms

At each time step, Nx ×Nz linear systems of dimension Ny − 3 are solved

A
mp
OSα

mp
OS = b

mp
OS

A
mp
SQα

mp
SQ = b

mp
SQ

A
mp
OS and A

mp
SQ are sparse matrices (resp. 7D and 5D)

bmp = bmp(αmpSQ , α
mp
OS)

contains non-linear terms
(convolution products coupling every αmpn)

⇒ b is calculated in physical space
⇒ must perform FFTs in each direction

Per iteration, i.e. at each time step,
27 FFT (direct or inverse) are performed

Context Numerical method HPC implementation Conclusion

Challenge: from 100 to 10000 cores

Example of con�guration: computational domain size 280× 2× 6.4

34560× 192× 768 modes (∼ 5. billions of modes)

travel 1 length with it=600000 iterations. (∼ 16 millions of FFT)

Memory constraint

N = Nx × Ny × Nz , with N very large

- large memory requirement (∼ 2To)

- BlueGene/P 0.5 Go per core ⇒ ∼ 4000 cores needed

Nx >> Ny ,Nz , elongated in one direction

- 1D domain decomposition ⇒ limited to ∼ 100 cores

- can only simulate a 40 times shorter channel length

Wall clock time constraint

CPU time 150h ∼ 6 days on ∼ 16000 cores

- with 100 cores (if possible), 160 times slower, 24000h ∼ 3 years

Context Numerical method HPC implementation Conclusion

Outline

Implementation on HPC platforms

MPI strategy to scale from O(100) to O(10 000) core

Hybrid strategy to migrate on many-core platform

Additional constraint for optimization

Data manipulation during simulation

Data manipulation for analysis and post-treatment

Context Numerical method HPC implementation Conclusion

Outline

Implementation on HPC platforms

MPI strategy to scale from O(100) to O(10 000) core

Hybrid strategy to migrate on many-core platform

Additional constraint for optimization

Data manipulation during simulation

Data manipulation for analysis and post-treatment

Context Numerical method HPC implementation Conclusion

2D domain decomposition

SPECTRAL SPACE

SPECTRAL SPACE

PHYSICAL SPACE
udu/dx

Non linear terms

udu/dx

Non linear terms

u
du/dx

FFT inverse axe x

FFT axe x

FFT inverse axe z

FFT axe z

Chebyshev between walls
(y direction, Ny + 1 modes)

2D FFT in periodical directions
(x direction and z direction)

Transpose from
y−pencil to x−pencil,
x−pencil to z−pencil and back

Increase the number of MPI processes and reduce wall clock time

1D decomposition: MPI ≤ Ny

34560× 192× 768 → max. of MPI processes: nproc=192

2D decomposition: MPI ≤ Ny × Nz

34560× 192× 768 → max. of MPI processes: nproc=147 456

Perform data communications and remapping

Choose data rearrangement to limit the increase in communications

Context Numerical method HPC implementation Conclusion

Outline

Implementation on HPC platforms

MPI strategy to scale from O(100) to O(10 000) core

Hybrid strategy to migrate on many-core platform

Additional constraint for optimization

Data manipulation during simulation

Data manipulation for analysis and post-treatment

Context Numerical method HPC implementation Conclusion

Constraints related to modern many-cores platforms

Tendancy towards many-cores platforms

Limited number of nodes

Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

allow larger number of modes within the same wall clock time

limit the memory available per processus

Context Numerical method HPC implementation Conclusion

Constraints related to modern many-cores platforms

Tendancy towards many-cores platforms

Limited number of nodes

Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

allow larger number of modes within the same wall clock time

limit the memory available per processus

Context Numerical method HPC implementation Conclusion

Constraints related to modern many-cores platforms

Tendancy towards many-cores platforms

Limited number of nodes

Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

allow larger number of modes within the same wall clock time

limit the memory available per processus

Context Numerical method HPC implementation Conclusion

Constraints related to modern many-cores platforms

Tendancy towards many-cores platforms

Limited number of nodes

Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

allow larger number of modes within the same wall clock time

limit the memory available per processus

Context Numerical method HPC implementation Conclusion

Constraints related to modern many-cores platforms

Tendancy towards many-cores platforms

Limited number of nodes

Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

allow larger number of modes within the same wall clock time

limit the memory available per processus

Context Numerical method HPC implementation Conclusion

Hybrid OpenMP/MPI

Suitable for recent many-core platforms

Reduces the number of MPI processes

Reduces the number of communications
Increases the available memory size per node

Modi�cation for many threads

Time of thread creation exceeds inner loop time execution

Implementation of explicit creation of threads

Recover full MPI performance and allow further improvment.

Context Numerical method HPC implementation Conclusion

Outline

Implementation on HPC platforms

MPI strategy to scale from O(100) to O(10 000) core

Hybrid strategy to migrate on many-core platform

Additional constraint for optimization

Data manipulation during simulation

Data manipulation for analysis and post-treatment

Context Numerical method HPC implementation Conclusion

More than domain decomposition ...

Tasks parallelization : mask communications by execution time

reduces by 20% time per iteration

less loss in communications - waist ∼ 10%

Placement of processus

speci�c on each platform, optimize interconnection communications

avoid threads to migrate from one core to another

example: TORUS versus MESH in BlueGene/P platform - 50% faster

Context Numerical method HPC implementation Conclusion

Outline

Implementation on HPC platforms

MPI strategy to scale from O(100) to O(10 000) core

Hybrid strategy to migrate on many-core platform

Additional constraint for optimization

Data manipulation during simulation

Data manipulation for analysis and post-treatment

Context Numerical method HPC implementation Conclusion

Problems related to the very large calculations
Data manipulation during simulation

Data Input/Output and storage

Large data

- case 34560× 192× 768 : one velocity �eld ∼ 120 Go
statistics ∼ 1 To

⇒ Use parallel IO (each processes writes its own data)

Large amount of �le, could rapidly exceeds inode or quota limit

- statistics on ∼ 2000 processes, ∼ 16 000 �les
- write ∼ 140 time step during travel length (Lx = 280)
(disk quota ∼ 16 To)

Manage the large amount of data generated

⇒ Use of prede�ned parallel format (VTK, HDF5, NetCFD, ...)

beware not to add useless complexity for regular structured data

⇒ wrap in tar archive �le or separated directory

⇒ Optimize data transfert between platform

Context Numerical method HPC implementation Conclusion

HPC simulations require every layer of HPC ressources

Tier-0, PRACE

1 JUGENE and JUQUEEN, Jülich, Germany

2 CURIE, Bruyères-le-Châtel, France

3 SuperMUC, Garching, Germany

Tier-1, GENCI

1 IDRIS, Orsay

2 CINES, Montpellier

3 TGCC, Bruyères-le-Châtel

Tier-2, Fédération Lyonnaise de Modélisation et Sciences Numériques

P2CHPD, la Doua
Many thanks to Christophe Péra

Context Numerical method HPC implementation Conclusion

Problems related to the very large calculations
Data manipulation after simulation

Data processing

Part of the analysis is performed during simulation

Part of it is explored afterwards

3D visualization

Cannot be performed directly on HPC platforms - batch mode

Requirements and constraints

Entails spatial derivation, eigenvalues evaluation ...

Preserve accuracy of the simulation

Should be interactive and when ready on batch mode

⇒ Should be done locally, i.e. implies data transfer and storage

⇒ Must be performed from remote access

⇒ Must be parallel, but on a smaller scale

Context Numerical method HPC implementation Conclusion

Example

Simulation (multi-run batch) on
LRZ SUPERMUC
∼ 5 billions of modes
34560× 192× 768
run with ∼ 1s/dt on 16 384 cores
2048 partitions

Analysis of the Big Data

in-situ analysis not possible
(batch)
=⇒transfert of data
=⇒parallel analysis mandatory
=⇒script mode mandatory
(reproductible)

Context Numerical method HPC implementation Conclusion

Software review

Open-source softwares

VisIt : parallel general interactive
tools (with our own DB reader
plugin)

ParaView : (idem)

Mayavi : Python VTK interface

Python + matplotlib : 1D , 2D +
some 3D

Limitations

linear interpolation

no repartitioning of the data

no resampling of the data

no zonal analysis

Context Numerical method HPC implementation Conclusion

Parallel client-server analysis tools

Parallel server

automatic repartitioning

resampling of the data

spectral interpolation

Python + NUMPY +
MPI4PY + SWIG

Python UDF

Multiple clients

1 matplotlib 1D + 2D

2 mayavi lib 3D visualization

3 VisIt 3D //e visualization
(using libsim, i.e. wo �le)

Python + UDF + script

TCP connection

Context Numerical method HPC implementation Conclusion

Work�ow for the analysis

Context Numerical method HPC implementation Conclusion

Client screen

Context Numerical method HPC implementation Conclusion

What was achieved for HPC simulations

A suitable development and software environment

code C++

BLAS, GSL

MPI/OpenMP - optimized libraries (e.g. FFTW, MKL)

cmake, git

swig interface Python and a C++ library derived from the code
python, mpi4py, numpy, matplotlib, mayavi, visit ...

Development of a parallel strategy for the code

revisit parallel strategy of the code

revisit strategy of data transfer and storage

revisit strategy for the analysis and visualization

Context Numerical method HPC implementation Conclusion

Resulting method

Characterictics

E�cient solver for hybrid multicore massively parallel platforms

Original coarse grained MPI/OpenMP strategy
Tasks overlapping

Pre- and post- processing tools for smaller MPI platforms

parallel VTK format (paraview)
Parallel Client/Server programs in Python calling a spectral library
2D/3D parallel visualization - (matplotlib/mayavi/visit)

Properties

Fairly portable

Small time spent in communications ∼ 10%

Rapid wall clock time for a global scheme
(1 billion of modes: 1.3s/it on BlueGene/P - 0.2s/it on SuperMUC)

Context Numerical method HPC implementation Conclusion

DNS of turbulent transition in channel entrance �ow
First transition Second transition

x

y

Instantaneous velocity in (y , z) plane

Context Numerical method HPC implementation Conclusion

To read more :
J. Montagnier, A. Cadiou, M. Bu�at, L. Le Penven,
Towards petascale spectral simulations for transition analysis in wall

bounded �ow (2012), Int. Journal for Numerical Methods in Fluids,
doi:10.1002/�d.3758

http://onlinelibrary.wiley.com/doi/10.1002/fld.3758/abstract

Context Numerical method HPC implementation Conclusion

2D Parallel strategy - illustration

64 128 256 512 1024 2048 4096
number of cores

10-1

100

101

tim
e

1D
2D

Figure: Time per iteration for a 1024× 256× 256 case.

improve the maximum of MPI processes

could be limited by memory availability

Context Numerical method HPC implementation Conclusion

OpenMP

64 128 256 512 1024 2048 4096
number of cores

10-1

100

101

tim
e

T1
T8

64 128 256 512 1024 2048 4096
number of cores

10-1

100

101

tim
e

T1
T2
T4
T8

Figure: Time per iteration for a 1024× 256× 256 case.

Suitable for recent many-core platforms

Reduces the number of MPI processes

Reduces the number of communications
Increases the available memory size per node

Implementation of explicit creation of threads

Coarse grained OpenMP needed for fast inner loop
De�ne a new synchronization barrier

Context Numerical method HPC implementation Conclusion

Speedup and e�ciency

2048 4096 8192 16384
ncore

1024
2048

4096

8192

16384

sp
ee

du
p

ideal
Babel

2048 4096 8192 16384
ncore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ef
fic

ie
nc

y

ideal
Babel

Figure: 4096× 512× 512 ∼ 109 modes

Decent wall clock time :
109 modes : 0.9 s/iteration for 16384 cores

Context Numerical method HPC implementation Conclusion

Communications

Nx × Ny × Nz cores map. comm.(%) time per iteration (s)
Mesh Torus Mesh Torus

1024× 256× 256 512 16(×32) 16.2 - 0.95 -
1024 32(×32) 15.8 - 0.52 -
2048 32(×64) 15.2 12.0 0.28 0.23

4096× 512× 512 2048 32(×64) 19.9 7.8 4.55 3.96
4096 64(×64) 30.8 10.2 4.29 1.98
8192 64(×128) 39.2 12.7 2.25 1.09

Context Numerical method HPC implementation Conclusion

Hybrid MPI/OpenMP

MPI proc./node threads per node nodes cores time per it. (s) gain
16 1 16 256 1.46
8 1 32 512 1.47
4 1 64 1024 1.43
2 1 128 2048 1.44
1 1 256 4096 1.44 1.00
1 2 256 4096 0.74 1.95
1 4 256 4096 0.38 3.79
1 8 256 4096 0.21 6.86
1 16 256 4096 0.14 10.28
16 1 256 4096 0.11 12.45
8 1 256 2048 0.20 6.85
4 1 256 1024 0.35 3.91
2 1 256 512 0.71 1.93
1 1 256 256 1.37 1.00

Time per iteration for the 1024× 256× 256 case.

	Context
	Challenge
	Physical problem
	Transition at the entrance of a channel flow

	Numerical method
	Equations

	HPC implementation
	Challenge
	Parallel strategy
	Multi-core architectures
	Hybrid OpenMP/MPI
	Tasks
	Data storage
	HPC centers
	Data processing
	Example
	Software
	Client-Server
	Workflow
	Client

	Conclusion
	Summary
	Summary
	Overview of the flow
	Overview of the flow

	Additional frames

